

Non-chemical alternatives for soil fumigation in greenhouse-grown lettuce

Sarah Van Beneden

Butterhead lettuce

- Heavy crop weight: 400–550g
- Tender and succulent nature

Exported to	Kg
Germany	27 million
France	12 million
The Netherlands	4 million
Czech Republic	1 million
Russia	1 million

Intensive practice

- Grown in greenhouses
- Mainly monoculture
- Up to six rounds of lettuce per year

Current control practices

- Chemical soil fumigations
 - Yearly or two-yearly
 - Past: Methyl bromide
 - Banned in 2006
- Chemical Fungicides
 - Weekly

Need for sustainable alternatives!

Sustainable alternatives

- Non-chemical soil disinfestation
 - Steaming
 - Biological soil disinfestation

- Stimulation of soil suppressiveness
 - Incorporation of lignin-rich material

Sustainable alternatives

- Non-chemical soil disinfestation
 - Steaming
 - Biological soil disinfestation

- Stimulation of soil suppressiveness
 - Incorporation of lignin-rich material

Non-chemical soil disinfestation

- Greenhouse trial
 - Untreated control
 - 1,3-dichloropropene (Shell-DD)
 - Steam injector normal speed
 - Steam injector high speed (lower cost)
 - Herbie 22
 - Herbie 25

Steam injector

- Soil cultivator to which steam tubes are connected
- Soil is cultivated to a depth of 40 cm
- Steam is injected

- 1h>70°C
- → Lethal to most soilborne pathogens

Temperature at different depths

Herbie

Biological soil fumigation

- Fermentation of high amounts of organic material in anaerobic conditions
 - →Anaerobic conditions
 - → Toxic degradation products
- → lethal to soilborne pathogens
- Good results against Verticillium dahlia and Meloidogyne spp.

Effect on sclerotia

- Immediately after soil treatment
- Incorporation of bags with sclerotia
- At different depths
- Waiting period
 - Steaming: 2 weeks
 - Shell DD: 3 weeks
 - Herbie: 4 weeks

Viability and mycoparasitism evaluated on selective media

Effect on sclerotia % viablity <> untreated control

Sclerotinia sclerotiorum							
Depth (cm)	2.5	10	20	30			
Herbie 25	10.0*	9.1 *	6.7*	27.8*			
Herbie 22	0.0	7.6*	11.1*	0.0*			
Steam (Fast)	233.3	82.6	125.0	68.8			
Steam	155.6	4.3*	0.0*	0.0*			
DD	90.0	156.0	108.0	72.0			
Control	100.0	100.0	100.0	100.0			
Rhizoctonia solani AG1-1B							
Depth (cm)	2.5	10	20	30			
Herbie 25	22.7*	22.7*	76.9	150.0			
Herbie 22	0.0*	18.2*	15.4*	33.3 <mark>*</mark>			
Steam (Fast)	0.0	0.0*	0.0*	0.0*			
Steam	0.0	0.0*	0.0*	0.0*			
DD	40.0*	33.3*	48.0*	14.3*			
Control	100.0	100.0	100.0	100.0			

Effect on basal rot (1st crop)

Main causal agent: *Botrytis cinerea* Occasional: *Pythium* spp., *Rhizoctonia solani*

A1 control

Admin, 26-9-2012

Effect on yield (1st crop)

Conclusions

Steaming

- Kills sclerotia of both pathogens
- Increases yield
- Reduction of basal rot symptoms
- ▶ High energy cost ⊗
- Fast steaming → not effective against S. sclerotiorum sclerotia

Herbie

- Herbie 22
- → Best effect on sclerotia
- Not all sclerotia were killed
- Increases yield
- Limited effect on basal rot (B.cinerea!)
- ▶ High cost ⊗
- ▶ Increase in NO_{3.} and EC

Sustainable alternatives

- Non-chemical soil disinfestation
 - Steaming
 - Biological soil disinfestation

- Stimulation of soil suppressiveness
 - Incorporation of lignin-rich material

Incorporation of lignin products

Lignin

- Component of plant cells
- High amounts in wood
- Complex polymer
- Structure similar to melanin

Background

Verticillium microsclerotia → crop residues with high lignin content/pure lignin have/has a negative influence on the viability of microsclerotia (Debode et al. 2005)

Incorporation of lignin in soil

- Hypothesis!
- Lignin enhances lignin-degrading microorganisms
- Produce enzymes (ligninases) to degrade lignin
- Some of the enzymes can also degrade melanin
- Melanin protects sclerotia against biotic and abiotic stress
- With degraded melanin sclerotia will become more susceptible to antagonists

The same effect on Rhizoctonia and Sclerotinia sclerotia?

Effect of lignin on sclerotia

Lignin

- By-product of paper-industry
 - Kraft-pine lignin (Meadwestvaco, USA)
 - Pure unsulphonated lignin
- →1% lignin added

2 Soil types

Location	Soil texture	pH- KCl	Org C%
Oppuurs	Sandy Ioam	7.7	1.9
Leest	Silt loam	6.2	1.1

Sclerotial viability

R. solani

Van Beneden et al. (2010)

Effect on *R. solani*: in depth study

- Lignin amended soil
 - More mycoparasitism by *Trichoderma*

More sclerotia possibly affected by bacteria

Dependent on soil microbial population

Greenhouse trial

- Three successive lettuce crops
 - Heavily infested greenhouse
 - Sclerotia buried in nylon mesh bags
 - 0.5% lignin \rightarrow upper 10 cm (crop 1 +2)
 - No effect on disease in crop 1 and 2

Rovral

Lignin

Control

Other lignin-rich products

Conclusion lignin-rich products

Promising control measure

- Decrease in sclerotial viability
- Increase mycoparasitism
- Long-term: decrease basal rot symptoms

Soil dependent

Ongoing research

- IWT project
- Identify microbial and physical parameters involved in soil dependent effect

Predict efficacy

Thanks to:

- Soraya França
- Monica Höfte

- Jasper Carrette
- Michael Crispel
- Geert Haesaert

- Ilse Leenknegt
- Raf De Vis

