

Influence of soil substrate on the biocontrol capacity of *Pseudomonas* CMR12a against Rhizoctonia root rot on bean

Hua, H. G. K., D´aes, J., De Maeyer, K. and Höfte, M

Outline

- Introduction
- Methodology
- Results and Discussion
- Conclusions
- Future prospectives

Beans (Phaseolus vulgaris L.)

Most important grain legumes for direct human consumption in the world.

Beans (*Phaseolus vulgaris* L.)

- Most important grain legumes for direct human consumption in the world.
- Health benefits from consuming beans on a regular basis:
 - Maintenance of a healthy weight
 - Reduced risk of diabetes
 - Reduced risk of heart disease
 - Reduced risk of colon cancer

Rhizoctonia solani

Very common soil-borne pathogen

Rhizoctonia solani

Very common soil-borne pathogen

- Exists primarily as
 - * Mycelium
 - Sclerotia

Rhizoctonia solani

Very common soil-borne pathogen

- Exists primarily as
 - * Mycelium
 - Sclerotia

Great diversity of host plants

Root rot on Bean

- Occur on young seedlings
- Small, oval to elliptical, reddish-brown sunken lesions or cankers on stem and roots
- Severely infected seedlings = dead

Research goal

Determining influence of different soil-sand mixtures on

biocontrol capacity of *Pseudomonas* CMR12a against

Rhizoctonia root rot

- Biocontrol agents:
 - * Pseudomonas CMR12a
 - CMR12a-mutants

???

- Biocontrol agents:
 - * Pseudomonas CMR12a
 - CMR12a-mutants
- Background knowledge:
 - Non-pathogenic on bean
 - Able to produce important antibiotics:
 - Phenazines (Phz)
 - Cyclic lipopeptides (CLPs)
 - Successful biocontrol agent

Biological Control of Rhizoctonia Root Rot on Bean by Phenazineand Cyclic Lipopeptide-Producing *Pseudomonas* CMR12a

Jolien D'aes, Gia Khuong Hoang Hua, Katrien De Maeyer, Joke Pannecoucque, Ilse Forrez, Marc Ongena, Lars E. P. Dietrich, Linda S. Thomashow, Dmitri V. Mavrodi, and Monica Höfte

Soil substrates:

25% potting soil: 75% sand

50% potting soil : 50% sand

75% potting soil : 25% sand

Soil substrates:

25% potting soil : 75% sand

♦ 50% potting soil : 50% sand

75% potting soil : 25% sand

Fungal isolate:

* AG 2-2 18

Soil substrates:

- 25% potting soil : 75% sand
- ⋄ 50% potting soil : 50% sand
- 75% potting soil : 25% sand

Fungal isolate:

* AG 2-2 18

Bacterial isolates:

- CMR12a (Phz⁺ and CLP1⁺)
- ♦ CMR12a-ΔPhz (Phz- and CLP1+)
- ♦ CMR12a-CLP1 (Phz⁺ and CLP1⁻)
- ♦ CMR12a- ΔPhz-CLP1 (Phz- and CLP1-)

Day 0

Preparation of fungal inoculum

Class 0: Healthy, no symptoms observed

1: Lesion ≤ 25% of stem and/or hypocotyl

2: Lesion ≤ 50% of stem and/or hypocotyl

3: Lesion ≤ 75% of stem or hypocotyl

4: Hypocotyl is completely decayed and seedling dead

Day 0

- Seed sowing
- Soil substrates used:
 - > 25% potting soil: 75% sand
 - > 50% potting soil: 50% sand
 - > 75% potting soil: 25% sand

Day 0

Day 6, 9 and 15

- Seed sowing
- Soil substrates used:
 - > 25% potting soil: 75% sand
 - > 50% potting soil: 50% sand
 - > 75% potting soil: 25% sand

Data record:

- Diameter of hypocotyl
- Length of shoot and root
- > Fresh and dry weight of shoot and root

- Optimal growth was observed in substrate containing 75% potting soil
- The decrease in proportion of potting soil results in the decrease in seedling growth

Fig 1. Difference in the development of bean seedlings grown on substrates containing various percentage of potting soil

Day 0

Preparation of fungal inoculum

Fig 2. Correspondence between the colonization of *R. solani* on toothpicks and the appearance of disease symptoms on bean seedlings

- Sterile soil: no significant difference amongst treatments
- Non-sterile soil: fastest invasion was observed in substrate with 25% ps

Sterile soil: no significant difference amongst soils

- Sterile soil: no significant difference amongst soils
- Non-sterile soil: disease severity was highest in 25% ps and lowest in 50% ps

Increase in percentage of sand present

Increase in percentage of sand present

Increase in the spread of *Rhizoctonia* hyphae

Decrease in the growth of seedlings

Future Prospects

- Studying the survival and multiplication capacity of CMR12a and CMR12a-mutants in different soil substrates
- Analysing the physical and chemical characteristics of soil combinations used.
- Exploring induced systemic resistance capacity of phenazines and cyclic lipopeptides

Acknowledgements

- Prof. Monica Höfte
- Katrien De Maeyer
- Jolien D'aes
- Sarah Van Beneden
- Soraya De Carvalho França
- Ilse Delaere
- "Special Research Fund" (BOF) Ghent University

